View the step-by-step solution to:


If L is a line through the origin in R2, the orthogonal projection onto L is the map P: R2

--> R2 defined as follows: Given x ε R2, draw a right triangle whose hypotenuse is given by x with one leg on the line L.

The vector which lies along the leg on L is P(x). Draw pictures illustrating that P is a linear map.

How would I do this

Top Answer

Here's the explanation you needed for... View the full answer


Answer ; -
Given that,
If I is alive through the origin in
R " , the orthogonal projection onto I is the map
P: Ra Ra defined as.
XER, & drawing a right triangle whose
hypotenuse is given...

Sign up to view the full answer

Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

  • -

    Study Documents

    Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

    Browse Documents
  • -

    Question & Answers

    Get one-on-one homework help from our expert tutors—available online 24/7. Ask your own questions or browse existing Q&A threads. Satisfaction guaranteed!

    Ask a Question