**Q21. Solve the linear equation (x/3) - (1/3) = -4**

** ** a. {-11}

b. {-13}

c. {11}

d. {13}

** ****Q22. The net income y (in millions of dollars) of Pet Products Unlimited from 1997 to 1999 is given by the equation y = 9x**^{2}** + 15x + 52, where x represents the number of years after 1997. Assume this trend continues and predict the year in which Pet Products Unlimited's net income will be $598 million.**

** ** a. 2005

b. 2004

c. 2003

d. 2006

** ****Q23. Find the distance d(P**_{1}**, P**_{2}**) between the points P**_{1}** and P**_{2}**.**

** P**_{1}** = (1, 7); P**_{2}** = (-7, -2)**

** ** a. √17

b. 1

c. √145

d. 72

** ****Q24. Find the general form of the equation for the line with slope = -2/3 and containing the point (0, 4).**

a. 2x - 3y = 12

b. 3x + 2y = -12

c. 2x + 3y = 12

d. 2x + 3y = -12

** ****Q25. Find the center (h, k) and radius r of the circle with the given equation (x - 6)**^{2}** + (y - 2)**^{2}** = 16.**

** ** a. (h, k) = (2, 6); r = 16

b. (h, k) = (6, 2); r = 4

c. (h, k) = (2, 6); r = 4

d. (h, k) = (6, 2); r = 16

** ****Q26. Graph the line containing the point P = (-2, -8) and having slope m = 1/2.**

** ****Q27. Graph the follwing equation by plotting points: 5x + 2y = 10.**

** ****Q28. If (-5, -5) is the endpoint of a line segment, and (-10, -7) is its midpoint, find the other endpoint.**

a. (5, -1)

b. (-15, -9)

c. (-9, -15)

d. (-15, -3)

** ****Q29. The lengths of the sides of a triangle are given. Determine if the triangle is a right triangle. If it is, identify the hypotenuse.**

15, 36, 39

a. right triangle; 39

b. right triangle; 15

c. right triangle; 36

d. not a right triangle

** ****Q30. Find the slope and y-intercept of the line -x + 10y = 70.**

a. slope = 10; y-intercept = -70

b. slope = -1; y-intercept = 70

c. slope = - 1/10; y-intercept = 7

d. slope = 1/10; y-intercept = 7

** ****Q31. Graph the following equation by plotting points: y = 1/x.**

** ****Q32. Find an equation for the line that is perpendicular to the line 3x - y = 6 and contains the point (0, 2).**

a. y = x/3 + 2

b. y = -x/3 + 6

c. y = -x/3 + 2

d. y = 5/3

** ****Q33. The lengths of the sides of a triangle are given. Determine if the triangle is a right triangle. If it is, identify the hypotenuse.**

8, 16, 20

a. right triangle; 8

b. right triangle; 16

c. right triangle; 20

d. not a right triangle

** ****Q34. Graph the circle with radius r = 2 and center (h, k) = (-4, -1).**

** ****Q35. Find the slope-intercept form of the equation of the line with the properties of a horizontal line containing the point (-2, 7).**

a. x = 7

b. y = 7

c. x = -2

d. y = -2

** ****Q36. List the intercepts for the graph of the equation y = 4x.**

a. (0, 0)

b. (0, 4)

c. (4, 4)

d. (4, 0)

** ****Q37. Graph the follwing equation by plotting points: y = 3x + 6.**

** ****Q38. Write the standard form of the equation of the circle with radius r = 2 and center (h, k) = (0, 0).**

a. x^{2} + y^{2} = 4

b. x^{2} + y^{2} = 2

c. (x - 2)^{2} + (y - 2)^{2} = 2

d. (x - 2)^{2} + (y - 2)^{2} = 4

** ****Q39. Find an equation for the line in general form Containing the points (-5, -7) and (0, 4).**

a. 11x - 5y = -20

b. -2x + 4y = -16

c. -11x - 5y = -20

d. 2x - 4y = -16

** ****Q40. List the intercepts and type(s) of symmetry, if any for y**^{2}** = -x + 9.**

** ** a. intercepts: (-9, 0), (0, 3), (0, -3); symmetric with respect to x-axis

b. intercepts: (0, -9), (3, 0), (-3, 0); symmetric with respect to y-axis

c. intercepts: (9, 0), (0, 3), (0, -3); symmetric with respect to x-axis

d. intercepts: (0, 9), (3, 0), (-3, 0); symmetric with respect to y-axis

#### Top Answer

1) x/3 - 1/3 = -4 x/3 = 1/3 - 4 x/3 = -11/3 x = -11 2) 9x^2 + 15x + 52 = 598 3x^2 + 5x - 182 = 0 x = 7 Year = 1997+7 = 2004.... View the full answer