View the step-by-step solution to:

__SARAI BOBSOTTI____________________________________________ Math 157 Week 5 Checkpoint Assignment -- Due Day 5 (Friday) Instructions:

how do the axes of rotatinal symmetry of an octahedron compare to the axes of rotational symmetry of a cube?
PROBLEM TYPE YOUR SOLUTIONS HERE Section 11.2 pp. 686-690 #14 Equilateral triangles, squares, and regular hexagons are the only  regular polygons that tessellate by themselves. Every triangle  and quadrilateral will tessellate. Several nonregular pentagons  and hexagons will tessellate. No convex polygon with more than  six sides will tessellate, but some nonconvex polygons with more  than six sides will tessellate. Section 11.2 pp. 686-690 #22 Because the ends of the tessellation is not equal and the squares  are not place completely adjacent or congruent. A similar method  uses only tessellating polygons with congruent adjacent sides to  make a basic figure for a curved tessellation.  Section 11.3 pp. 697-700 #4 An isosceles triangle that forms one of the points of the star, such as is called a golden triangle because the ratio of its longer side to its shorter side is the golden ratio. In both a golden triangle and a golden rectangle, the ratio of its longer side to its shorter side is the golden ratio, f = (1 + 15) 2 L 1.618. Section 11.3 pp. 697-700 #12 Star-shaped polygons have n startip points, 2 n congruent sides, n congruent point angles with measure and n congruent dent angles. They differ from star polygons in that they are simple polygons, whereas star polygons are nonsimple. No this in not a star shape polygon if it was 9 and 2 it would be a star polygon. But this has 9 triangle in two polygons that seem to overlap. Section 11.4 pp. 714-718 #8 A prism is a polyhedron with a pair of congruent faces, called  bases, that lie in parallel planes. The vertices of the bases are  joined to form the parallelogram-shaped lateral faces of the  prism. Adjacent lateral faces share a common edge called a  lateral edge. An altitude of a prism is a segment that is  perpendicular to both bases with endpoints in the planes of the  bases. Section 11.4 pp. 714-718 #16 Note: There are two parts to this problem. A. 8 B.16 Section 11.4 pp. 714-718 #40 Note: There are five parts to this problem. A. Octahedron: V=6 F = 8 E = 12 B. Lose, gain, gain C.   D.   E.
Show entire document

Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

-

Educational Resources
• -

Study Documents

Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

Browse Documents