(A Shoeshine Shop) Consider a shoeshine establishment consisting of two chairs—chair 1 and chair 2. A customer upon arrival goes initially to chair 1 where his shoes are cleaned and polish is applied. After this is done the customer moves on to chair 2 where the polish is buffed. The service times at the two chairs are assumed to be independent random variables that are exponentially

distributed with respective rates μ1 and μ2. Suppose that potential customers arrive in accordance with a Poisson process having rate λ, and that a potential customer will enter the system only if both chairs are empty.

The preceding model can be analyzed as a continuous-time Markov chain, but first we must decide upon an appropriate state space. Since a potential customer will enter the system only if there are no other customers present, it follows that there will always either be 0 or 1 customers in the system. However, if there is 1 customer in the system, then we would also need to know which chair he was

presently in.

distributed with respective rates μ1 and μ2. Suppose that potential customers arrive in accordance with a Poisson process having rate λ, and that a potential customer will enter the system only if both chairs are empty.

The preceding model can be analyzed as a continuous-time Markov chain, but first we must decide upon an appropriate state space. Since a potential customer will enter the system only if there are no other customers present, it follows that there will always either be 0 or 1 customers in the system. However, if there is 1 customer in the system, then we would also need to know which chair he was

presently in.