View the step-by-step solution to:

Consider a laminar boundary layer flow over a flat plate for which the velocity profile can be approximated by cubic equation, u/U = 3(y/)/2 (y/)3/2...

Consider a laminar boundary layer flow over a flat plate for which the velocity profile can be approximated by cubic equation, u/U = 3(y/δ)/2 − (y/δ)3/2 (see profile in text Fig. 9.12).

  • Show that this profile satisfies the appropriate boundary conditions.
  • Using the momentum integral relation, equ. (9.26), derive expressions for δ/x and τw(x). Inte- grate τw(x) and obtain an expression for the drag coefficient, CD, as a function of Rel, where l is length of plate. Compare with results in Table 9.2.
  • Repeat, but now consider a turbulent boundary layer for which the velocity profile can be approximated by a power law equation, u/U = (y/δ)1/6.

Recently Asked Questions

Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

-

Educational Resources
  • -

    Study Documents

    Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

    Browse Documents
  • -

    Question & Answers

    Get one-on-one homework help from our expert tutors—available online 24/7. Ask your own questions or browse existing Q&A threads. Satisfaction guaranteed!

    Ask a Question