This problem parallels the previous one, but uses a different production
function. Also, you'll need one more exponent rule in addition to those given in the previous problem. The rule is Bs/B = Bs-1.
a) Suppose that a firm's production function is given by Q = KL. If this production function exhibits
A.
increasing returns to scale
B.
constant returns to scale
C.
decreasing returns to scale
b) As in the previous problem, suppose that r = w = 2, so that production cost in terms of K and L can be written 2K + 2L. The isoquant slope MPL/MPK is equal to -K/L , so that equating the isoquant slope to the -1 slope of the isocost line yields K = L. Substitute K = L in the production function Q = KL . Then use the resulting equation to solve for L as a function of Q, using the exponent rules from above. This relationship gives the cost-minimizing L as a function of Q. This function has the form L = bQd , where the multiplicative factor b =
nothing
and the exponent d =
nothing
(enter the exponent as a fraction). Since K = L, the same function gives K as a function of Q: K = bQd.
c) Now substitute your solutions into the cost expression 2K + 2L to get cost C as a function of Q. This function is given by C(Q) = gQh, where g =
nothing
and h =
nothing
(enter the exponent as a fraction).
d) The average cost function AC(Q) is equal to cost divided by output, or C(Q)/Q. Using your solution for C(Q), it follows that AC(Q) = aQm, where a =
nothing
and m =
nothing
(enter as fraction, and include a minus sign if one is needed). Graphing AC as a function of Q, the result is
A.
an upward sloping curve
B.
a downward sloping curve
C.
a horizontal line
e) Marginal cost MC(Q) is given by the derivative of C(Q). If you remember how to compute the derivative of a function like gQh , then do so. The resulting MC function has the form MC(Q) = zQr , where z =
nothing
and r =
nothing
. The MC curve lies
A.
above the AC curve
B.
below the AC curve
tesque dapibus efficitur laoreet. Nam risus ante, dapibus a mol
tesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie conse
onec aliquet. Lorem ipsum dolor sit amet, consecte
Donec a
nec facilisis. Pellentesque dapibus
lestie consequat, ultrice
, ultrices ac magna. Fusce dui lectus
llentesque dapibus e
ur laoreetlle
a. Fusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam l
itur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet ac, dictum vitae
onec aliquet. Lorem ipsum dolor sit amet
llentesque dapib
usce dui lectus, congue vel l
gue vel laor
ec aliqu
trices ac magna. Fusce dui lectus, congue vel lao
nec fa
entesque dapibus efficitur laoreet. Nam risus ante
onec aliqu
risusf
inia pulvinar tortor nec fac
dictum vFuusce dui lame
, ultriceFurem ipsumame
Fusce dui lectus,congue vamet, c
ce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar
s a molestie consequat, ultr
m risus ante,
pulvinar toFuet, consectFugue
acinia pulviFugue
acinia pulviame
sus ante, dapibus a moleslm riirem ipame
acinia
sque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel laoreet a
ia pulvinar tortor n
inia pulvina
sque dapibussqu
consectetur adipiscing elit. Nam lalle viaciniam ips
lestie consequat, ultrice
ng elit. Nam lacinia pulvinar tortor necsquctum vitae odio. Donec aliquet. Lorem ipsum dolocing elit. Nam lacinia p
, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultr
amet, consectetur adipiscing
trices ac mag
facilisis. Pellentesqugue
, consectetusqu
nec facilisis. Pellentesque dapfe viitur l,gueame
ce dui lectus, congue vel laoreet acur laoreet. Nam ris
ec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie conse
ur laoree
ipsum dolor sit amet, consectetur adipiscing eli
443,473 students got unstuck by Course
Hero in the last week
Our Expert Tutors provide step by step solutions to help you excel in your courses