View the step-by-step solution to:

1 Exercise 7: Me262, P-59, MiG15, F-86, Hawker Hunter, Saab 29, F-8, Mirage III, MiG-21, MiG-23, Su-7, Electric Lightning, Electric Canberra, F-104,...

Aerodynamics assist needed...............................................................

1 Exercise 7: Maneuvering & High Speed Flight For this week’s assignment you will research a historic or current fighter type aircraft of your choice (options for historic fighter jets include, but are not limited to: Me262, P-59, MiG- 15, F-86, Hawker Hunter, Saab 29, F-8, Mirage III, MiG-21, MiG-23, Su-7, Electric Lightning, Electric Canberra, F-104, F-105, F-4, F-5, A-6, A-7, Saab Draken, Super Etendard, MiG-25, Saab Viggen, F-14, and many more) . As previously mentioned and in contrast to formal research for other work in your academic program at ERAU, Wikipedia may be used as a starting point for this assignment. However, DO NOT USE PROPRIETARY OR CLASSIFIED INFORMATION even if you happen to have access in your line of work. Notice also that NASA has some great additional information at: http://www.hq.nasa.gov/pao/History/SP-468/contents.htm. 1. Selected Aircraft: 2. Aircraft Gross Weight [lbs] : 3. Aircraft Wing Area [ft 2 ] : 4. Positive Limit Load Factor (LLF - i.e. the max positive G) for your aircraft: 5. Negative LLF (i.e. the max negative G) for your aircraft: 6. Maximum Speed [kts] of your aircraft. If given as Mach number, convert by using Eq. 17.2 relationships with a sea level speed of sound of 661 kts. For simplification, assume the CL max for your aircraft was 1.5 (unless you can find a different CL max in your research). A. Find the Stall Speed [kts] at 1G under sea level standard conditions for your aircraft (similar to all of our previous stall speed work, simply apply the lift equation in its stall speed form from page 44 to the above data): B. Find the corresponding Stall Speeds for 2G, 3G, 4G, and so on for your selected aircraft (up to the positive load limit from 4. above), using the relationship of Eq. 14.5. You can use the table below to track your results. C. Add the corresponding Stall Speeds for -1G, -2G, and so on for your selected aircraft (up to the negative load limit from 5. above) to your table. Assume that your fighter wing has symmetrical airfoil characteristics, i.e. that the negative maximum CL value is equal but opposite to the positive one. (Feel free to use specific airfoil data for your aircraft, but please make sure to use the correct maximum positive and negative Lift Coefficients in the correct This document was developed for online learning in ASCI 309. File name: Ex_5_Aircra± Performance Updated: 08/01/2015
Background image of page 1
2 places, i.e. CL max in the positive part and highest negative CL in the negative part of the table and curve, and indicate your changes to the given example.) Explanation: Making the assumption of symmetry simplifies your work, since the stall curve in the negative part of the V-G diagram becomes a mirror image of the positive side. Notice also that the simplified form of Eq. 14.5 won’t work with negative values; however, if using the G- dependent stall equation in the middle of page 222, it becomes obvious that negative signs cancel out between the negative G and the negative CL max , and Stall Speeds can actually be calculated in the same way as for positive G, reducing your workload on the negative side to only one calculation of the stall speed at the negative LLF, if not a whole number.) D. Track your results in the V-G diagram below by properly labeling speeds at intercept points. Add also horizontal lines for positive and negative load limits on top and bottom and a vertical line on the right for the upper speed limit of your aircraft at sea level from 6. above. (Essentially you are re-constructing the V-G diagram by appropriately labeling it for your aircraft. Notice that the shape of the diagram and the G-dependent curve relationship is essentially universal and just the applicable speeds will change from aircraft to aircraft. Make sure to reference book Fig. 14.8 for comparison.) G V S (kts) PLL: 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 NLL: This document was developed for online learning in ASCI 309. File name: Ex_5_Aircra± Performance Updated: 08/01/2015 8 9 10 L
Background image of page 2
Show entire document
Sign up to view the entire interaction

Top Answer

Please find the... View the full answer

Aircraft.doc

I am Choosing the Dassault Mirage III Air Craft–
A Family of Single Seat, Single Engine Fighter Air Craft By Dassault Air Craft By Dassault
Aviation for the French Air ForceSPECIAL FEATURES TOP...

Sign up to view the full answer

Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

-

Educational Resources
  • -

    Study Documents

    Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

    Browse Documents
  • -

    Question & Answers

    Get one-on-one homework help from our expert tutors—available online 24/7. Ask your own questions or browse existing Q&A threads. Satisfaction guaranteed!

    Ask a Question
Ask a homework question - tutors are online