Computational Thinking with Python.
View the step-by-step solution to:
Question

# <pre class="ql-syntax">Hi I<span class="hljs-string">'m working on an EDX course

Called Foundations of Data Science: Computational Thinking with Python. I have never used Python before and in the Lab they are asking us to calculate the estimated distance based upon the following formula: frac{1}{2} G frac{M}{R^2} t^2 text{ meters} I'</span> get <span class="hljs-number">1.77</span> <span class="hljs-keyword">and</span> the answer <span class="hljs-keyword">is</span> <span class="hljs-number">1.13</span> my calculations are <span class="hljs-keyword">for</span> Time <span class="hljs-number">1.2</span> Constant <span class="hljs-number">6.645</span> * <span class="hljs-number">10</span>**<span class="hljs-number">-11</span> Mass <span class="hljs-number">7.34767309</span> *<span class="hljs-number">10</span>*<span class="hljs-number">822</span> radius <span class="hljs-number">1.37</span> * <span class="hljs-number">10</span>**<span class="hljs-number">6</span> I<span class="hljs-string">'m not sure what I need to do to get the correct answer. my formula is gravity_constant = 6.674 * 10**-11 moon_mass_kg = 7.34767309 * 10**22 moon_radius_m = 1.737 * 10**6 time = 1.2 so Esimated_distance_m = (1/2*gravity_constant)*moon_mass_kg/(moon_radius_m**2)*(time**2)﻿ error received: ﻿﻿Newton'</span>Test code: &gt;&gt;&gt; <span class="hljs-comment"># Read the text above the question to see what</span> &gt;&gt;&gt; <span class="hljs-comment"># estimated_distance_m should be.</span> &gt;&gt;&gt; round(estimated_distance_m, <span class="hljs-number">5</span>) <span class="hljs-number">1.13</span> Test result: Trying: round(estimated_distance_m, <span class="hljs-number">5</span>) Expecting: <span class="hljs-number">1.13</span> ********************************************************************** Line <span class="hljs-number">4</span>, <span class="hljs-keyword">in</span> tests/q231.py <span class="hljs-number">4</span> Failed example: round(estimated_distance_m, <span class="hljs-number">5</span>) Expected: <span class="hljs-number">1.13</span> Got: <span class="hljs-number">1.17022</span> Instructions below: Newton<span class="hljs-string">'s Law. Using this footage, we can also attempt to confirm another famous bit of physics: Newton'</span>s law <span class="hljs-keyword">of</span> universal gravitation. Newton<span class="hljs-string">'s laws predict that any object dropped near the surface of the Moon should fall frac{1}{2} G frac{M}{R^2} t^2 text{ meters} after  t  seconds, where

### Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

• ### -

Study Documents

Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

Browse Documents