View the step-by-step solution to:

# How do I solve these questions?

How do I solve these questions?

The IQ scores of children in a city are assumed to follow a normal distribution with unknown mean μ and known variance σ2. A random sample IQ scores with a size of 25 is drawn by a researcher. Based on this sample, a 97% confidence interval for μ is found to be (91.49, 104.51).

(a) Show that σ = 15.

(b) Another random sample of IQ scores with a size of 11 drawn and the scores are recorded as follows:

134, 95, 102, 99, 91, 111, 127, 99, 101, 113, 105

Based on the combined information of the two samples, test, at the 0.05 significance levels, whether or not the mean IQ score of the children in the city is less than the national average of 105.

a) the confidence interval is given by x̄ + z* σ/sqrt(n) At 97% z =2.17 and we are given that n=25 Hence CI =x̄ +... View the full answer

a) Z alpha/2 = 2.17 on 97% confidence(from Z table) Given that 97% confidence interval = (91.49, 104.51). Margin error =... View the full answer

### Why Join Course Hero?

Course Hero has all the homework and study help you need to succeed! We’ve got course-specific notes, study guides, and practice tests along with expert tutors.

### -

Educational Resources
• ### -

Study Documents

Find the best study resources around, tagged to your specific courses. Share your own to gain free Course Hero access.

Browse Documents