Please see the attached file for the complete problem.

AutoIgnite produces electronic ignition systems for automobiles at a plant in Cleveland, Ohio. Each ignition system is assembled from two components produced at AutoIgnite's plants in Buffalo, New York, and Dayton, Ohio. The Buffalo plant can produce 2000 units of component 1, 1000 units of component 2, or any combination of the two components

each day. For instance, 60% of Buffalo's production time could be used to produce component 1 and 40% of Buffalo's production time could be used to produce component 2; in this case, the Buffalo plant would be able to produce 0.6(2000) = 1200 units of component 1 each day and 0.4(1000) = 400 units of component 2 each day. The Dayton plant can produce 600 units of component 1, 1400 units of component 2, or any combination of the two components each day. At the end of each day, the component production at Buffalo and Dayton is sent to Cleveland for assembly of the ignition systems on the following work day.

a. Formulate a linear programming model that can be used to develop a daily production schedule for the Buffalo and Dayton plants that will maximize daily production of ignition systems at Cleveland.

b. Find the optimal solution.

AutoIgnite produces electronic ignition systems for automobiles at a plant in Cleveland, Ohio. Each ignition system is assembled from two components produced at AutoIgnite's plants in Buffalo, New York, and Dayton, Ohio. The Buffalo plant can produce 2000 units of component 1, 1000 units of component 2, or any combination of the two components

each day. For instance, 60% of Buffalo's production time could be used to produce component 1 and 40% of Buffalo's production time could be used to produce component 2; in this case, the Buffalo plant would be able to produce 0.6(2000) = 1200 units of component 1 each day and 0.4(1000) = 400 units of component 2 each day. The Dayton plant can produce 600 units of component 1, 1400 units of component 2, or any combination of the two components each day. At the end of each day, the component production at Buffalo and Dayton is sent to Cleveland for assembly of the ignition systems on the following work day.

a. Formulate a linear programming model that can be used to develop a daily production schedule for the Buffalo and Dayton plants that will maximize daily production of ignition systems at Cleveland.

b. Find the optimal solution.

### Recently Asked Questions

- A population has a mean μ= 83 and a standard deviation σ= 26 . Find the mean and standard deviation of a sampling distribution of sample means with sample

- What is the historical context or setting of the drama of "Trifles," by Susan Glaspell and why the main character of this drama was at the mercy of societal

- In a survey of 2995 adults, 1486 say they have started paying bills online in the last year. Construct a 99% confidence interval for the population