Question

# matlab aaaaaaaa

matlab aaaaaaaa

Image transcription text

LAB ACTIVITY 3.16.1: MATLAB: Cramer's Rule This tool is provided by a third party. Though your activity may be recorded, a page refresh may be needed to fill the banner. 0 / 7 MATLAB: Cramer's Rule In this activity you will find the solution to a system of linear equations using Cramer's Rule. Consider the system of linear equations: 4x+ y = 5 2x - 3y =13 Create the coefficient matrix C and column matrix of constants d. C = [4 1; 2 -3] d = [5; 13] Note: Cramer's Rule only applies to systems of linear equations with invertible square coefficient matrices. Initialize the matrices C1 and C2 to equal C. C1 = C C2 = C Replace column 1 in C1 with the column vector of constants d. C1( :, 1)=d &amp;Replace column 2 in C2 with the column vector of constants d. C2(:, 2)=d The solution can now be found using ratios of determinants. x = det (C1) /det(C) y = det (C2) /det(C) Utilize the following linear system of equations for this activity. x1+ x2 - x3= 6 3x1 - 2x2 + *3 = - 5 x1 + 3x2 - 2x3 = 14 Script Save C Reset MATLAB Documentation OUT D WN 1 Create the coefficient matrix A and column matrix of constants b. Initialize the matrices Al, A2, and A3 as matrix A. %Replace the appropriate columns in Al, A2, and A3 with the column vector of constants b. 00 Find the solution for x1, x2, and x3 using ratios of determinants. Run Script

... Solved by verified expert

inia pulvinar tortor nec fac

ctum vitae odio. Donec aliquet. Lentlestie consequat, ultrices ac magna. Fusce dui lectus, con

ce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesqu

Explore over 16 million step-by-step answers from our library

Step-by-step explanation

ac, dictum vitae odirisusipsum dolor sit amet, conse volestieicitur ltlestie consequat,cocoamusce dui lectus, congue vel laoreet ac, dictum vitae odio. Donec aliquet. Lorem ipsum dolor sit amet, cfacilitesque dapibus eftricesosuultricese viturm rillentlestiesus antetcongue vel laoreetcnec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat, ultrices ac magna. Fusce dui lectus, congue vel

s a m

squ

entesque dapib

usc

congue vel la

cing

ctum vitae odio

icitur lao 1 Attachment JPG
Student reviews
80% (5 ratings)